Skip to main content

Yapay Zeka, Araçların Gelecekteki Yerini Tahmin Edebiliyor

Honda, Michigan Üniversitesi ve Indiana Üniversitesi’nden araştırmacılar, yol kavşaklarındaki araçların izlerini tahmin edebilen bir derin öğrenme sistemi geliştirdiler.

Araştırmacılar, makalelerinde “Güvenli sürüş için, sadece yakındaki nesneleri doğru bir şekilde tanımlamak ve bulmak değil, aynı zamanda gelecekteki yerlerini ve eylemlerini de öngörerek çarpışmaları önlemek için yeterli zamanın olmasını gerek.” diyor. Ekip, “Çalışmamız, gelecekteki araç konumlandırmanın egosantrik görünüm ve kavşaklar gibi zorlayıcı senaryolara meydan okuyan sorunlarını ele alan ilk çalışmadır.” dedi.

Devamını Oku

NVIDIA DGX-2 Hava Tahminini Hızlandırıyor

Günümüzde hava durumu ajansları ve rüzgar çiftlikleri, hava alanları, lojistik merkezleri, denizcilik operasyonları ve diğer birçok kuruluş, çoklu düğümlerde karmaşık bilgi işlem kümeleri üzerinde özelleştirilmiş hava durumu tahminleri yürütmektedir.

Bu yaklaşımdaki sorun, kümelenmelerin çoklu işletim sistemleri, paylaşılan dosya sistemleri ve karmaşık yönetim işlemleri gibi bir dizi zorlukla karşılaşmasıdır.

Meteoroloji ve İklimtoloji, İsviçre Meteoroloji ve İklimbilim Dairesi’nden araştırmacılar ve MeteoSwiss, hava tahminlerini daha erişilebilir hale getirmeye yardımcı olmak için, tek bir NVIDIA DGX-2 süper bilgisayarı üzerinde çalışabilecek ve bir kümeyle aynı performansı elde edebilecek bir hava durumu tahmin modeli geliştirdiler.

COSMO adlı algoritma, bir DGX-2 üzerinde 287 milyon şebeke hücresiyle MeteoSwiss’ten 1000 etki alanı veri kümesi çalıştırıyor.

Yukarıdaki görselleştirme, en son Turing GPU’larından yararlanmak için OptiX kullanan ışın izleme yetenekleriyle yakın zamanda geliştirilmiş olan ParaView adlı açık kaynaklı görselleştirme aracını kullanmaktır. Akış görselleştirme, yüksek basınç ve düşük basınç alanları arasındaki rüzgarı gösterir.

Supercomputing 18‘e katılanlar, NVIDIA standında simülasyonun canlı interaktif bir tanıtımını görebilirler.

Kaynak: Nvidia Developer News Center

Geri Yayılım Algoritması’na Matematiksel Yaklaşım

Geri Yayılım Algoritması

Bir yapay sinir ağı, her birinde özel hesaplamaların yapıldığı nöronlardan oluşmaktadır ve bu nöronların özelleştiği 3 tür katmandan bahsedilmektedir. Bunlar; girdi katmanı, gizli katman ve çıktı katmanıdır. Girdi katmanı, göreve özel olarak türü değişen verilerin sinir ağına sunulduğu katmandır. Veriler, bir ses kaydı (Doğal Dil İşleme), bir görüntü (Görüntü İşleme) veya bir metin (Duygu Analizi) gibi farklı türlerde olabilir.

i = \begin{bmatrix}i_1&i_2&i_3\end{bmatrix}

Verinin türüne göre, yapay sinir ağının gerçekleştireceği işlemler farklılık gösterecektir. Örneğin bir görüntü verisinde, öncelikle renk ayrıştırma veya nesnelerin kenarlarını ayırt etme işlemleri yapılırken; metinsel bir veride öncelikle kelimeleri köklerine ayrıştırma işlemi gerçekleştirilir.

Bir sinir ağındaki katmanlar arasında, her bir katmandaki nöronu bir sonraki katmandaki nöronlara bağlayan bağlantılar ve her bir bağlantının sayısal olarak bir değeri vardır. Bu değerlere ağırlık denir.

 

W_{ig}=\begin{bmatrix}w_{i1g1}&w_{i1g2}&w_{i1g3}&w_{i1g4}\\w_{i2g1}&w_{i2g2}&w_{i2g3}&w_{i2g4}\\w_{i3g1}&w_{i3g2}&w_{i3g3}&w_{i3g4}\end{bmatrix}

W_{gk}=\begin{bmatrix}w_{g1k1}&w_{g1k2}&w_{g1k3}&w_{g1k4}\\w_{g2k1}&w_{g2k2}&w_{g2k3}&w_{g2k4}\\w_{g3k1}&w_{g3k2}&w_{g3k3}&w_{g3k4}\\w_{g3k1}&w_{g3k2}&w_{g3k3}&w_{g3k4}\end{bmatrix}

W_{ko}=\begin{bmatrix}w_{k1o1}&w_{k1o2}\\w_{k2o1}&w_{k2o2}\\w_{k3o1}&w_{k3o2}\\w_{k4o1}&w_{k4o2}\end{bmatrix}

 

Ağırlık değerleri, bağlı oldukları her bir nöronun, eğitimin sonucunda alınacak çıktı değeri için ne kadar öneme sahip olduğunu gösterir. Devamını Oku

Mini Otonom Araç Yarışması Başlıyor!

Başvurmadıysanız, çok az zaman kaldı!

Mini Otonom Araç Yarışması, Bilkent Cyberpark, NVIDIA ve MIT Beawer Works ana sponsorluğunda Open Zeka tarafından düzenlenmektedir. Bilkent Cyberpark yarışma kapsamında organizasyon çalışmaları, eğitimde kullanılacak alanlar ve hizmetler konusunda destek sağlamaktadır. NVIDIA ise Derin Öğrenme Kurumu bünyesinde yapay zeka eğitimleri için gerekli altyapı ve kart bağışı ile destek sağlamaktadır. MIT Beaver Works yarışmada kullanılacak dokümanlar konusunda destek vermektedir.

Yarışma hakkında daha fazla bilgi almak için: https://openzeka.com/marc/