Skip to main content

OpenZeka MARC 2019 Başvuruları Uzatıldı

OpenZeka MARC, yapay zeka algoritmalarının kullanıldığı Lise ve Üniversite öğrencileri ile Şirket/Girişimci çalışanlarının katılım sağlayabileceği mini otonom araç yarışmasıdır.

Son Başvuru Tarihi: 25 Ocak 2019

1. Eğitim Dönemi: 19-25 Ocak 2019 (7 gün süreli)
2. Eğitim Dönemi: 28 Ocak – 3 Şubat 2019 (7 gün süreli)

Yarışma kapsamında isteyen katılımcılara otonom araç inşa süreci, görüntü işleme, derin öğrenme, sensör füzyonu, 3D Stereo Kamera, Lidar, IMU verilerinin analizi ve otonom sürüş konularında uygulamalı eğitim verilecektir.

Eğitimlere katılım için giriş seviyesinde Python bilgisi yeterlidir. Open Zeka tarafından yazılım süreci geliştirilen 1/10 ölçekli araç platformu, otonom araç/makine uygulamaları geliştirmek isteyenlere en yeni yapay zeka algoritmalarını öğrenme imkanı sunmaktadır.

Başvuru ve detaylar için: https://openzeka.com/marc/

Yapay Zeka İçin Sırada Ne Var? Beş Kısa Video

Anlatma. Göster. Yapay zekanın dünya üzerindeki olağanüstü etkileri gerçekten anlatmaya değerdir. Ve “Ben AI’ım” adlı dokümanlarımız tam da bunu yapıyor aslında, her seferinde olağanüstü bir hikaye…

Bu masallar – dünyanın her yerindeki en ölümcül hastalıklardan birini Kenya’nın güneşte dökülen vahşi ormanlarına götüren son derece gelişmiş bir robot jenerasyonu tarafından yetiştirilen yemyeşil Kaliforniya tarlalarından, en gelişmiş Tayvanlı kanser kliniklerine kadar – her yerde yer alıyor – Yapay zekanın büyük değişimler yapabileceğini açıkça belirtiyor.

Devamını Oku

AI Dönüşüm Rehberi – Şirketinizi AI çağına nasıl yönlendirebilirsiniz?

Günümüzde AI (Yapay Zeka) teknolojisi, aynı elektriğin 100 yıl önce yaptığı gibi, her endüstriyi dönüştürmek için hazırlanıyor. 2018 – 2030 arasında, GSYİH’de tahmini 13 trilyon büyüme yaratacak. Google, Baidu, Microsoft ve Facebook gibi önde gelen teknoloji şirketlerinde çok büyük bir değer yaratmış olsa da, ek değer yaratma dalgalarının çoğu yazılım sektörünün ötesine geçecektir.

Bu AI Dönüşüm Rehberi, hem Google hem de Baidu’yu harika AI şirketlerine dönüştürmede lider rol oynayan Google Brain ekibine ve Baidu AI Grubuna liderlik eden analizlere dayanmaktadır. Herhangi bir işletmenin bu Rehber’i takip etmesi ve güçlü bir AI şirketi haline gelmesi mümkün olsa da, bu öneriler öncelikli olarak 500 milyon ABD Doları’ndan 500 milyar dolara kadar piyasa değeri / büyüklüğü olan büyük kuruluşlar için uyarlanmıştır.

Bunlar, kuruluşunuzu AI ile dönüştürmek için önerdiğim adımlar. Bu rehberde açıklayacağım 5 adım için:

Şirketler için Yapay Zeka Dönüşüm Rehberi

Derin Öğrenme, Meme Kanseri Tümörlerini Sınıflandırmasına Yardımcı Oluyor

Meme Kanseri Görüntüsü 1

Amerika Birleşik Devletleri’nde, meme kanseri olmuş veya olan 3,1 milyondan fazla kadın var. Bu yıl 266,000’den fazla kadının agresif meme kanseri teşhisi konması bekleniyor. Doktorların bu hastalığı daha iyi tanımasına ve tedavi etmesine yardımcı olmak için araştırmacılar yapay zekaya yöneliyorlar. Kuzey Carolina Üniversitesi’nden yakın zamanda yayınlanan bir çalışmada, araştırmacılar, göğüs kanseri dijital patoloji görüntülerini analiz etmek ve tümörleri yüksek doğrulukla sınıflandırmak için geliştirdikleri derin bir öğrenmeye dayalı sistemi açıklamaktadır.

Devamını Oku

Jetson AGX Xavier Modülü Satışa Çıktı – Otonom Makineler İçin Büyük Bir Atılım

Jetson AGX Xavier modülü artık global olarak distribütörlerden temin edilebilir halde, Jetson TX2 ve TX1 ürün ailesine katılıyor.

Geliştiriciler, dünyanın en zorlu görevlerini çözecek ve imalat, lojistik, perakende, tarım, akıllı şehirler, sağlık hizmetleri ve daha fazlası dahil olmak üzere çok çeşitli endüstrileri dönüştürecek otonom makineler üretmek için Jetson AGX Xavier’i kullanabilir.

NVIDIA Jetson AGX Xavier modülü, küçük bir 100x87mm form faktöründe 32 TOPS’ye kadar yüksek hesaplama ve 750 Gbps yüksek hızlı I/O sunar. Bu, geliştiricilere 20 kattan daha fazla performans ve NVIDIA Jetson TX2’nin 10 katı kadar enerji verimliliğini sağlar.

Devamını Oku

Yapay Zeka, Araçların Gelecekteki Yerini Tahmin Edebiliyor

Honda, Michigan Üniversitesi ve Indiana Üniversitesi’nden araştırmacılar, yol kavşaklarındaki araçların izlerini tahmin edebilen bir derin öğrenme sistemi geliştirdiler.

Araştırmacılar, makalelerinde “Güvenli sürüş için, sadece yakındaki nesneleri doğru bir şekilde tanımlamak ve bulmak değil, aynı zamanda gelecekteki yerlerini ve eylemlerini de öngörerek çarpışmaları önlemek için yeterli zamanın olmasını gerek.” diyor. Ekip, “Çalışmamız, gelecekteki araç konumlandırmanın egosantrik görünüm ve kavşaklar gibi zorlayıcı senaryolara meydan okuyan sorunlarını ele alan ilk çalışmadır.” dedi.

Devamını Oku