Skip to main content

Makale: Going Deeper With Convolutions

We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation of this architecture, GoogLeNet, a 22 layers deep network, was used to assess its quality in the context of object detection and classification.

Makale: Real-Time Pedestrian Detection With Deep Networks Cascades

We present a new real-time approach to object detection that exploits the efficiency of cascade classifiers with the accuracy of deep neural networks. Deep networks have been shown to excel at classification tasks, and their ability to operate on raw pixel input without the need to design special features is very appealing. However, deep nets are notoriously slow at inference time. In this paper, we propose an approach that cascades deep nets and fast features, that is both extremely fast and extremely accurate. We apply it to the challenging task of pedestrian detection. Our algorithm runs in real-time at 15 frames per second. The resulting approach achieves a 26.2% average miss rate on the Caltech Pedestrian detection benchmark, which is competitive with the very best reported results. It is the first work we are aware of that achieves extremely high accuracy while running in real-time.