Skip to main content

Makale: Fast R-CNN – Region based Convolutional Networks

This paper proposes Fast R-CNN, a clean and fast framework for object detection. Compared to traditional R-CNN, and its accelerated version SPPnet, Fast R-CNN trains networks using a multi-task loss in a single training stage. The multi-task loss simplifies learning and improves detection accuracy. Unlike SPPnet, all network layers can be updated during fine-tuning. We show that this difference has practical ramifications for very deep networks, such as VGG16, where mAP suffers when only the fully-connected layers are updated. Compared to “slow” R-CNN, Fast R-CNN is 9x faster at training VGG16 for detection, 213x faster at test-time, and achieves a significantly higher mAP on PASCAL VOC 2012. Compared to SPPnet, Fast R-CNN trains VGG16 3x faster, tests 10x faster, and is more accurate. Fast R-CNN is implemented in Python and C++ and is available under the open-source MIT License at this https URL

Ferhat Kurt

NVIDIA Deep Learning Institute Sertifikalı eğitmen.

Bir Cevap Yazın

Bu site, istenmeyenleri azaltmak için Akismet kullanıyor. Yorum verilerinizin nasıl işlendiği hakkında daha fazla bilgi edinin.